init¶
- 
data_base.db_initializers.synapse_activation_binning.init(db, groupby='', scheduler=None, prefun=prefun, applyfun=applyfun, postfun=postfun, maxtime=400)¶
- Main pipeline to bin synapse activations from a Synapse activation dataframe. - Parameters:¶
- db : DataBase¶
- The simrun-initialized database object. Must contain the key - synapse_activation.
- groupby : str¶
- Aggregation key for the synapse activation bins. Available values include: - celltype
- presynaptic_column
- proximal(soma distance < 500 um)
- EI(Lumping the EXC / INH celltypes together)
- binned_somadist: synapse counts for all 50 microns
- any column in the specified dataframe. 
- Can be a list, if “sub-subgroups” should be calculated. 
 
- scheduler : dask scheduler¶
- A dask scheduler for the comptation (e.g. - dask.distributed.Client.get())
- prefun : callable¶
- A function to preprocess the synapse activation dataframe before binning. The function should take a pandas dataframe and return a pandas dataframe. Default: - prefun()
- applyfun : callable¶
- A function to bin the synapse activations. The function should take a pandas dataframe and return a numpy array. Default: - applyfun()
- postfun : callable¶
- A function to postprocess the binned synapse activations. The function should take a pandas series and return a numpy array. Default: - postfun()
 
- Returns:¶
- None. The binned synapse activation data will be stored in - db.
 - See also - prefun(),- applyfun(), and- postfun()for the default functions that bin the synapse activations.- See also - init()for how to simrun-initialize a database.
Documentation unclear, incomplete, broken or wrong? Let us know