calculate_optimal_g¶
- simrun.synaptic_strength_fitting.calculate_optimal_g(pdf)¶
- Calculate the optimal synaptic conductance such that the EPSP statistics match empirical data. - This function calculates the optimal synaptic conductance by matching empirically observed EPSP statistics (mean, median, maximum) to a linear model. Each statistic provides a different estimate of the optimal - g. The final optimal- gis then a weighed average of the three statistics, where the weights for- mean:median:maxare- 2:2:1respectively.- This function is used in - PSPsto calculate the optimal synaptic conductance for each celltype.- Parameters:¶
- pdf : pd.DataFrame¶
- A table containing the empirical EPSP statistics (mean, median and maximum), and linear fits for each statistic. 
 
- Returns:¶
- None. Updates the original table inplace. Adds the columns - optimal g,- optimal g mean,- optimal g median, and- optimal g max.
 - See also - linear_fit_pdf()for the linear model that relates the EPSP statistics to the synaptic conductance.- Example: - >>> pdf = psp.get_summary_statistics(method='dynamic_baseline') >>> fit = linear_fit_pdf(pdf) >>> fit.head() EPSP mean_offset EPSP mean_slope EPSP med_offset EPSP med_slope EPSP max_offset EPSP max_slope EPSP_std_offset EPSP_std_slope ... >>> measured_data EPSP_mean_measured EPSP_med_measured EPSP_max_measured celltype_1 ... celltype_2 ... >>> pdf = pd.concat([fit, measured_data], axis=1) >>> calculate_optimal_g(pdf) >>> pdf[cell_type 1']['optimal g'] 1.85
Documentation unclear, incomplete, broken or wrong? Let us know