simrun
❭ synaptic_strength_fitting
❭ PSPs
❭ get_summary_statistics
PSPs.get_summary_statistics¶
-
simrun.synaptic_strength_fitting.PSPs.get_summary_statistics(method=
'dynamic_baseline'
, merge_celltype_kwargs={}
, ePSP_summary_statistics_kwargs={}
)¶ Calculate summary statistics of the PSP voltage and timing.
- Parameters:¶
method (str) –
dynamic_baseline
: a simulation without any synaptic activation issubstracted from a simulation with cell activation. The maximum and timepoint of maximum is returned
constant_baseline
: the voltage at \(t = 110ms\) (i.e. directly beforesynapse activation) is considered as baseline and substracted from all voltages at all timepoints. The maximum and timepoint of the maximum after \(t = 110ms\) is returned.
merge_celltype_kwargs (dict) – Additional keyword arguments to pass to
merge_celltypes()
.ePSP_summary_statistics_kwargs (dict) – Additional keyword arguments to pass to
ePSP_summary_statistics()
. Options: (“threashold”, “tPSPStart”)
- Returns:¶
A table of summary statistics.
- Return type:¶
pd.DataFrame
Example:
>>> psp.get_summary_statistics(method='dynamic_baseline') epspMean epspStd epspMed epspMin epspMax tMean tStd tMed celltype gAMPA gNMDA L2 0.5 0.5 0.288331 0.141456 0.262698 0.100779 1.440870 15.509268 2.305882 15.050 1.0 1.0 0.538904 0.273115 0.500306 0.129087 2.739804 15.696267 2.420884 15.150 1.5 1.5 0.773226 0.395746 0.707955 0.181199 3.927223 15.741435 2.441578 15.175 2.0 2.0 0.994781 0.513567 0.891020 0.108587 5.031582 15.881431 2.539182 15.350 ...